skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kurkure, Yash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 22, 2026
  2. The task of extracting a diverse subset from a dataset, often referred to as maximum diversification, plays a pivotal role in various real-world applications that have far-reaching consequences. In this work, we delve into the realm of fairness-aware data subset selection, specifically focusing on the problem of selecting a diverse set of size k from a large collection of n data points (FairDiv). The FairDiv problem is well-studied in the data management and theory community. In this work, we develop the first constant approximation algorithm for FairDiv that runs in near-linear time using only linear space. In contrast, all previously known constant approximation algorithms run in super-linear time (with respect to n or k) and use super-linear space. Our approach achieves this efficiency by employing a novel combination of the Multiplicative Weight Update method and advanced geometric data structures to implicitly and approximately solve a linear program. Furthermore, we improve the efficiency of our techniques by constructing a coreset. Using our coreset, we also propose the first efficient streaming algorithm for the FairDiv problem whose efficiency does not depend on the distribution of data points. Empirical evaluation on million-sized datasets demonstrates that our algorithm achieves the best diversity within a minute. All prior techniques are either highly inefficient or do not generate a good solution. 
    more » « less